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Abstract. The complete set of static screening masses is determined for the SU(2) Higgs model from
one-loop coupled gap equations. Results from the version containing scalar fields both in the fundamental
and adjoint representations are compared with the model arising when integration over the adjoint scalar
field is performed. A non-perturbative and non-linear mapping between the couplings of the two models
is proposed which exhibits perfect decoupling of the heavy adjoint scalar field. Also the alternative of a
gauge invariant mass resummation is investigated in the high temperature phase.

1 Introduction

The finite temperature SU(2) Higgs model was exten-
sively studied in recent years in connection with the elec-
troweak phase transition (EWPT) and baryon asymmetry
generation in the standard model (see [1] for a review).
Considerable progress was achieved in understanding the
thermodynamics of the phase transition with the help of
the method of dimensional reduction. In this approach
the superheavy modes (i.e. the non-zero Matsubara modes
with typical mass ∼ 2πT ) and the heavy A0 field (with
a mass ∼ gT ) are integrated out and the thermodynam-
ics is described by an effective theory, the 3D SU(2) Higgs
model [2–4]. The properties of the phase transition and the
screening masses were studied in great detail using lattice
Monte Carlo simulations of the reduced model [5–9] and
also by the Dyson–Schwinger (DS) technique in the full 4D
theory [10,11] as well as in the effective 3D theory [12].
Lattice Monte Carlo simulations predict that the line of
first order transitions ends for some Higgs mass mH = mc

H
[6,8,9]. The same conclusion was obtained using the DS
approach in [12] and the value of the critical mass mc

H was
found to be close to the prediction of Monte Carlo simula-
tions. Though the validity of one-loop gap equations was
critically questioned [13,14], a recent two-loop calculation
[15] has demonstrated that it is not an accident that the
results of the one-loop level analysis are fairly close to the
conclusions of the numerical simulations.

The possibility of dimensional reduction is based on
the fact that in the full model there are different well sep-
arated mass scales g2T � gT � 2πT for small couplings
g. Recent 4D Monte Carlo simulations of the finite tem-
perature SU(2) Higgs model [16,17] provide good non-
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perturbative tests for the validity of dimensional reduc-
tion. A detailed discussion of relating 4D and 3D results
was published very recently in [18].

The purpose of the present paper is twofold. First, we
would like to provide some non-perturbative evidence for
the decoupling of the A0 field from the gauge + Higgs
dynamics in the vicinity of the phase transition. We are
going to solve a coupled set of gap equations for the 3D
fundamental + adjoint Higgs model. This model emerges
when the non-static modes are integrated out in the full
finite temperature Higgs system. Its predictions for the
screening masses will be compared with those obtained
by Buchmüller and Philipsen (BP) [12] in the 3D Higgs
model (with only one scalar field in the fundamental rep-
resentation) using the same technique. The main result of
our investigation is a proposition for a non-perturbative
and non-linear mapping between the two models ensur-
ing quantitative agreement between the screening masses
in a wide temperature range on both sides of the transi-
tion. This high quality evidence for the decoupling of the
A0 field at the actual finite mass ratios presumes, how-
ever, the knowledge of the “exact” value of the Debye
screening mass, since for the proposed mapping its non-
perturbatively determined value turns out to be essential.

Second, we wish to investigate the symmetric phase
in more detail. There the Higgs and the Debye screening
masses are both of the same order of magnitude ∼ gT
and thus in that regime there is no a priori reason for
the A0 field to decouple. This circumstance makes the
quantitative relation of the screening masses calculated in
the 3D fundamental + adjoint Higgs model particularly
interesting in the high-T phase. Here we are going to apply
two different resummation techniques and check to what
extent a non-perturbative mass hierarchy in this part of
the spectra persists .
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All calculations of this paper are performed at one-
loop accuracy, but the above mentioned signal [15] for the
good numerical convergence of the masses determined in
the DS scheme gives us confidence that the effects we find
will appear also in improved treatments.

The presentation of our investigation proceeds as fol-
lows: in Sect. 2 we derive the coupled set of gap equations
for the 3D fundamental + adjoint Higgs model and dis-
cuss some problems related to the formal decoupling of the
adjoint Higgs field when its screening mass goes to infin-
ity. In Sect. 3 we solve the coupled set of these equations
numerically and estimate the variation in the screening
masses and some critical parameters due to the presence
of the adjoint Higgs field. In Sect. 4 we study the screening
masses using an alternative gauge invariant resummation
scheme, restricted in applicability to the symmetric phase.
Finally, Sect. 5 presents our conclusions.

2 The extended gap equations

The Lagrangian of the three dimensional SU(2) funda-
mental + adjoint Higgs model is [12,3]

L3D = Tr
[1
2
Fij · Fij + (DiΦ)+(DiΦ)

+µ2Φ+Φ + 2λ(Φ+Φ)2
]

+
1
2
(Di

~A0)2 +
1
2
µ2

D
~A2

0

+
λA

4
( ~A2

0)
2 + 2c ~A2

0TrΦ+Φ, (1)

where

Φ =
1
2
(σ1 + i~π~τ), DiΦ = (∂i − igWi)Φ,

Wi =
1
2
~τ · ~Wi. (2)

The relations between the parameters of the 3D theory
and those of the 4D theory are perturbatively derived at
the one-loop level [3]:

g2 = g2
4DT, λ =

(
λ4D +

3
128π2 g4

4D

)
T,

λA =
17

48π2 g4
4DT, c =

1
8
g2
4DT, µ2

D =
5
6
g2
4DT 2,

µ2 =
(

3
16

g2
4D +

1
2
λ4D

)
T 2 − 1

2
µ2

4D. (3)

If the integration over the A0 adjoint Higgs field is per-
formed we obtain the model investigated in [12] with pa-
rameters ḡ, λ̄, µ̄. These couplings of the reduced theory are
related to the parameters of the 3D fundamental + adjoint
Higgs theory through the following relations:

ḡ2 = g2
(

1 − g2

24πµD

)
, λ̄ = λ − 3c2

2πµD
,

µ̄2 = µ2 − 3cµD

2π
. (4)

In particular, we note that the µ̄ scale serves as the tem-
perature scale of the fully reduced system, while µ is the
scale for the system containing both the fundamental and
the adjoint scalars. The two are related perturbatively by
a constant shift.

In order to perform the actual calculations in the bro-
ken phase it is necessary to shift the Higgs field, σ → v+σ′.
After this shift and the gauge fixing (the gauge fixing pa-
rameter is denoted by ξ) the Lagrangian including the
ghost terms assumes the form

L =
1
4

~Fµν · ~Fµν +
1
2ξ

(∂µ
~Wµ)2 +

1
2
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0
~W 2

µ
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g2

8
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µ(σ′2 + ~π2)

+λvσ′(σ′2 + ~π2) +
λ
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2
+

λA

4
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2
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2

+c ~A0
2
(σ′2 + ~π2) + ∂µ ~c∗ · ∂µ~c + ξm2

0
~c∗ · ~c

+g∂µ ~c∗ · ( ~Wµ × ~c) + ξ
g2

4
vσ′ ~c∗ · ~c + ξ

g2

4
v ~c∗ · (~π × ~c)

+
1
2
µ2v2 +

1
4
λv4 +

1
2
(µ2 + λv2)(σ′2 + ~π2)

+v(µ2 + λv2)σ′, (5)

where the following notations were introduced for the tree-
level masses: m2

0 = (1/4)g2v2 (the vector boson mass),
M2

0 = µ2 + 3λv2 (the Higgs mass) and m2
D0 = µ2

D + 2cv2

(the Debye mass). The last two terms of (5) arise from
the Higgs potential after the shift in the Higgs field σ. For
µ2 < 0, they vanish if one expands around the classical
minimum v2 = −µ2/λ. In general, however, these terms
have to be kept [12].

In order to obtain the coupled gap equations one re-
places the tree-level masses by the exact masses:

m2
0 → m2 + δm2, M2

0 → M2 + δM2,

m2
D0 → m2

D + δm2
D, (6)

and treats the differences δm2 = m2
0 − m2, δM2 = M2

0 −
M2, δm2

D = m2
D0 − m2

D as counterterms. The exact Gold-
stone and ghost masses are both equal to ξ1/2m, where
m is the exact gauge boson mass. The gauge invariance
of the self-energies of the Higgs and gauge bosons is en-
sured by introducing appropriate vertex resummations.
Their explicit formulae can be found in [12]. In the present
extended model, a resummation of the Higgs–A0 vertex
would be also necessary if the gauge invariance of the A0
self-energy is to be ensured. Then the only source of the
gauge dependence which would remain is the equation for
the vacuum expectation value v.
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All these resummations are equivalent to working with
the following gauge invariant Lagrangian:

L3D
I =

1
4

~Fij · ~Fij + Tr
(

(DiΦ)+DiΦ − 1
2
M2Φ+Φ

)

+
1
2
(m2

D − 8cm2

g2 ) ~A2
0

+
g2M2

4m2 Tr(Φ+Φ)2 + 2c ~A2
0TrΦ+Φ. (7)

In this Lagrangian one shifts the Higgs field around its
classical minimum σ → σ′ + 2m

g and adds the correspond-
ing gauge fixing and ghost terms [12]. Shortly, we shall
argue that the A0–Higgs vertex resummation arising from
the replacement of v by 2m/g when the scalar field is
shifted in the last term of the above Lagrangian destroys
the mass hiearchy between the heavy A0 and the light
gauge and Higgs fields. Therefore, in this paper we have
to give up the full gauge independence of the resumma-
tion scheme. The numerical solution to be presented below
shows that the gauge dependence of the A0 − −Φ vertex
in our resummation scheme introduces only a minor ad-
ditional gauge dependence beyond that of the equation
for the vacuum expectation value [12] appearing below in
(14).

The coupled set of gap equations is constructed from
that of [12] by adding the contributions due to the pres-
ence of the adjoint Higgs field. The self-energy contribu-
tions for the 3D fundamental Higgs and for the 3D adjoint
Higgs model were already calculated in [12] and [19], re-
spectively. Below we list only the additional contributions
to the self-energies, which all contain at least one A0–Φ
vertex (the corresponding diagrams are listed in Appendix
A). We emphasize once again that no resummation of the
A0–Φ vertex was applied.

The additional contribution to the self-energy of the
A0 field coming from Higgs, Goldstone, gauge and ghost
fields (diagrams a–i) is

δΠH,G,gh
A0

(p, m, M, mD)

= −4cv2(µ2 + λv2)
M2 +

3cgv

π

(
M

4m
+

m2

M2

)

−cM

2π
+

3
√

ξ

4π
(gv − 2m)

+
4c2v2

π

[
3
2

mD

M2 − 1
p

arctan
p

mD + M

]
. (8)

There is also an additional contribution to the gauge boson
self-energy coming from the adjoint Higgs field (diagram
m):

δΠH
T (p, m, M, mD) =

3cg

2π

mv

M2 mD. (9)

The contribution of ~A0 to the Higgs self-energy (diagrams
j–l) is the following

δΠA0
H (p, m, mD) = −3mDc

2π
− 6c2v2

π

1
p

arctan
p

2mD

+
9gcv

4πm
mD. (10)

Making use also of the pieces of the self-energies calculated
in [12,19] we write down a set of coupled on-shell gap
equations for the screening masses of the magnetic gauge
bosons, fundamental Higgs and adjoint A0 fields in the
form

m2 = ΠT (p = im, m, M) + δΠA0
T (p = im, mD)

+δΠH
T (p = im, m, M, mD), (11)

M2 = Σ(p = iM, m, M)

+δΠA0
H (p = iM, m, mD), (12)

m2
D = Π00(p = imD, m, mD)

+δΠH,G,gh
A0

(p = imD, m, M, mD), (13)

where ΠT and Σ are defined by (17) and (18) of [12].
δΠA0

T and Π00 were presented in (7) and (8) of [19].
If on the right hand side of the third equation one in-

serts the tree-level masses, the next-to-leading order result
of [20] is recovered for the Debye mass in the SU(2) Higgs
model.

The equation for the vacuum expectation value makes
the set of the above three equations complete:

v(µ2 + λv2) =
3

16π
g

(
4m2 +

√
ξM2 +

M3

m

)
+

3c

2π
vmD.

(14)
It is important to notice that this equation can be rewrit-
ten as

v(µ2
eff + λv2) =

3
16π

g

(
4m2 +

√
ξM2 +

M3

m

)
, (15)

with
µ2

eff = µ2 − 3c

2π
mD. (16)

This equation is formally identical to the equation of BP
for the vacuum expectation value [12]. On the basis of
this observation, we expect that the main effect of the A0
integration is the above shift in the µ2 scale. Since mD
is itself a non-trivial function of µ this non-perturbative
mapping is also nonlinear.

A very similar set of equations could be derived for
the case of the gauge invariant resummation of the A0–Φ
vertex. They are listed in Appendix B. For instance, one
would write in the last term on the right hand side of
(14) 2m/g in place of v, which would suggest a different
redefinition of the temperature (µ2) scale:

µ̃2
eff = µ2 − 3c

πg

mmD

v
. (17)

If the tree-level masses are inserted into this redefinition
it gives the usual relation between the mass parameters of
the full static and the A0 reduced models (see (4)).

3 Numerical results

The main goal of the present investigation is to propose a
scheme of solution for the full static Higgs model (1) which
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Fig. 1. The Higgs mass in units of g2 as a function of µ2/g4

calculated at λ/g2 = 1/8 using the gauge invariant A0–Φ vertex
resummation version of the gap equations. Shown are the Higgs
mass derived in the full static theory in the Landau a and in
the Feynman gauge b and the Higgs mass values in the A0

reduced theory in the Landau gauge c and in the Feynman
gauge d. The µ2 shift indicated by (4) was applied

reproduces the BP solution of the reduced static model
(with A0 integrated out). The existence of such a solution
is made plausible by the Appelquist–Carazzone theorem
[21], but by no means it is trivial to construct it for two
obvious reasons. The decoupling theorem is valid only for
infinitely different mass scales, while the mD/m, mD/M
ratios are finite in the realistic case. There are corrections
to the theorem even if we would be able to compare the
exact values of the corresponding masses calculated in the
two models for the perturbatively related values of the
couplings. The second source of deviations comes from the
resummation applied in the process of the perturbative
solutions. It is not clear which resummed solution of the
full static model would correspond to the BP resummed
approximate solution of the reduced 3D effective model at
one-loop level.

Though the construction of a good quality correspon-
dence is a very difficult task, it is a necessary effort if one
wishes to go beyond the “existence proof” of the decou-
pling in case of the resummed solutions.

We have to admit that it would be much easier to as-
sess the status of A0 decoupling and the quality of the BP
solution if the exact (Monte Carlo) solution of the model
(1) would be available. However, Monte Carlo simulations
of the gauge + fundamental + adjoint Higgs system are
extremely difficult to realize (see discussion in [5]). There-
fore, our present construction can be considered a first
detailed attempt to establish quantitative arguments for
the A0 decoupling.

Our first attempt at solving the full static model fol-
lowed the gauge invariant vertex resummation procedure
employed also by the BP solution of the A0 reduced model.
In Fig. 1 the results of the two solutions for the Higgs
mass M are displayed taking into account the perturbative
mapping (4) between the parameters of the two models.

The deviations are large, especially in the critical region.
We arrived at a negative conclusion: The gauge invari-
antly resummed one-loop solutions of the gap equations
of the two models do not correspond to each other if the
perturbative A0 integration is correct.

We have also tried to compare the predictions of the
full static and the reduced models in the case when the
mass parameter of the reduced model is chosen according
to (17). Such a non-perturbative mapping between the pa-
rameters of the two models somewhat improves the situa-
tion deep in the broken phase; however, near the crossover
region the values of the masses calculated in the two mod-
els differ considerably. We conclude that if a gauge invari-
ant resummation of the A0–Φ vertex is used we are not
able to find a physically motivated relation between the
parameters of the full static and the reduced models with
the help of which the two models give acceptably close
mass predictions. Therefore, we will no further discuss the
fully gauge invariant resummation scheme but turn to the
discussion of the results obtained in the case when the
A0–Φ vertex is left unresummed.

If the A0–Φ vertex is left unresummed, a very simple
expectation emerges concerning the effect of the A0 in-
tegration on the mass spectra, as was disscused on the
basis of (16) in the previous section. Therefore, we will
first compare the predictions for the Higgs and gauge bo-
son masses from the coupled gap equations (11)–(14) of
the 3D fundamental + adjoint Higgs model with those ob-
tained in the A0 reduced theory, the 3D Higgs model [12].
The corresponding Higgs masses are shown in Fig. 2 using
two different gauges. The results obtained in the A0 re-
duced theory are displayed after the shift required by (4)
is performed. As one can see the difference between the
full and the reduced theory is still visible in the vicinity
of the crossover. In this region the relative difference be-
tween the predictions of the full and the reduced theory
is about 20%.

Our proposal to resolve this relatively large deviation
is to introduce a more complicated relationship between
the couplings. Having gained intuition from (16), we have
plotted the mass predictions for the Higgs field derived
from our full set of equations against the results of BP
calculated for couplings taken from (4) with the replace-
ment µD → mD:

g2
eff = g2(1 − g2

24πmD
), λeff = λ − 3c2

2πmD
,

µ2
eff = µ2 − 3c

2π
mD. (18)

The non-trivial nature of this replacement becomes clear
from Fig. 3 where the µ2 dependence of mD is displayed.
Clearly, its non-trivial µ2 dependence is most expressed in
the neighborhood of the phase transformation (crossover)
point µ2/g4 ∈ (0.1–0.2). The application of this mapping
to the data obtained from the model containing both the
fundamental and the adjoint representation leads to a per-
fect agreement of the two data sets for large values of λ/g2.
For smaller values of λ/g2 (1/32, 1/64) the mapping (18)
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Fig. 2. The Higgs boson masses at λ/g2 = 1/8 (crossover
region) in units of g2 as a function of µ2/g4 in the 3D funda-
mental + adjoint Higgs model and in the 3D SU(2) Higgs (A0

reduced) theory. Shown are the Higgs mass in the full static
theory in the ξ = 0 (Landau) gauge a and in the ξ = 1 (Feyn-
man) gauge b, and the Higgs boson mass in the A0 reduced
theory in the ξ = 0 gauge c and in the ξ = 1 gauge d

works very well in the symmetric phase, but in the broken
phase (4) seems to be the better choice.

We suspect that the tree-level piece in mD arising from
the Higgs effect should not be included into the correction
of (4), since it is itself a tree-level effect. Therefore, we
propose the following replacement in (18):

mD →
√

m2
D − 2cv2. (19)

In Fig. 4 it is obvious that a very good agreement could
be obtained with this mapping between the Higgs mass
predictions of the one-loop gap equations of the full static
and the A0 reduced theory for λ/g2 = 1/32. The quality
of the agreement on both sides of the phase transition
is good, signalling that the influence of the “mini-Higgs”
effect in the symmetric phase is negligible. Therefore, it
is not surprising that for λ/g2 = 1/8 the same quality of
agreement is obtained as before.

It is important to notice that there is a strong gauge
parameter dependence in the symmetric phase and in the
vicinity of the crossover. The variations due to the change
in the gauge are equal in the full and in the reduced theory,
which indicates that the additional gauge dependence, in-
troduced by the gauge non-invariant resummation of the
A0 field is negligible. The mapping (19) performs equally
well in the Landau and in the Feynman gauge.

Other quantities which are worth of considering for the
comparison of the full 3D and the reduced theories are
λc/g2, the endpoint of the first order transition line and
µ+/g2, the mass parameter above which the broken phase
is no longer metastable. The values of µ2

+/g4 for different
scalar couplings and different gauges in the full and in
the reduced theory are summarized in Table 1. Here the
mapping (18) could be implemented only by extrapolating
from smaller µ2/g4, since the endpoints of metastability

Table 1. Values of µ2
+/g4 in the full static theory (A), in

the perturbatively reduced theory (B) and in the reduced the-
ory obtained using non-perturbative matching described in the
text (C). Calculations were done in the Landau (ξ = 0) and in
the Feynman (ξ = 1) gauges

λ/g2 A B C

ξ = 0 ξ = 1 ξ = 0 ξ = 1 ξ = 0 ξ = 1
1/32 0.1516 0.1423 0.1426 0.1341 0.1499 0.1405
1/48 0.1647 0.1558 0.1627 0.1541 0.1637 0.1546
1/64 0.1841 0.1750 0.1881 0.1808 0.1875 0.1792
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Fig. 3. The µ2 dependence of the Debye mass for λ
g2 = 1/8

do not correspond to each other, and in some cases mD
could not be determined from the gap equations. Also here
for larger values of λ/g2 the application of (18) led to an
improved agreement between the endpoint µ2

+/g4 values,
while for λ/g2 = 1/48, 1/64 the mapping (4) works better.
In the table we have displayed µ2

+/g4 values of the A0
reduced theory shifted perturbatively and with help of the
best performing non-perturbative mapping (19). For both
gauges the latter agrees with the µ2

+/g4 values of the full
static theory very well.

The endpoint of the 1st order line in the Landau gauge
in the 3D Higgs theory was found at λc/g2 = 0.058. The
corresponding critical scalar coupling in the full 3D theory
is within the 1% range. In Feynman gauge we find λc/g2 =
0.078 for the A0 reduced theory and the corresponding
value for the full 3D theory lies again very close to it. Thus,
the A0 field has almost no effect on the position of the
endpoint. The strong gauge dependence of λc indicates,
however, that higher order corrections to this quantity are
important.

The depth of the gauge dependence of the screening
masses is pronounced, even more so in the symmetric
phase (µ2/g4 > 0.3). For example the value of the gauge
boson mass is roughly 0.28g2 in the symmetric phase for
the Landau gauge. The corresponding value in the Feyn-
man gauge is about 0.22g2. The gauge dependence of the
gauge boson mass is somewhat weaker at the two-loop
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Fig. 4. The Higgs boson mass in units of g2 as a function of
µ2/g4 calculated at λ/g2 = 1/32 in the Landau gauge in the
full static theory and in the A0 reduced theory. Shown are the
Higgs mass in the reduced theory obtained by perturbative re-
duction a, in the reduced theory obtained by non-perturbative
matching (cf. (18) and (19)) b and in the full static theory c

level [15]. It should be also noticed that the gauge boson
mass depends weakly on the parameters of the scalar sec-
tor (µ, µD, λ, λA). This fact was also noticed in previous
investigations [12,19].

4 Screening masses in the symmetric phase
with a gauge invariant resummation scheme

The main motivation for the present investigation was to
gain insight into the decoupling of the dynamics of the
fundamental and the adjoint Higgs fields. The degree of
the decoupling is expected to depend on the mass ratio
of the fundamental and adjoint Higgs fields. In the sym-
metric phase both masses are of the same order in magni-
tude (e.g. ∼ gT ). Therefore, the hierarchy of the A0 and
Higgs masses can only be present due to numerical prefac-
tors. The persistence of the perturbatively calculated ratio
should be checked in any non-perturbative approach.

As we have seen in the previous section the gauge de-
pendence in the symmetric phase is too strong in the ap-
plied schemes to give a stable estimate for the mass ratio
of the fundamental and the adjoint Higgs fields. A reliable
non-perturbative estimate for the Higgs mass deep in the
symmetric phase (defined through the pole of the propaga-
tor) is even more interesting because it was not measured
so far on lattice. Therefore, in this section we will inves-
tigate a coupled set of gap equations in the symmetric
phase which is based on the gauge invariant resummation
scheme of Alexanian and Nair (AN) [22]. In this approach
one can avoid any vacuum expectation value for the Higgs
field in the symmetric phase and because of this fact this
approach is gauge invariant.

In order to derive the one-loop gap equations for the
Higgs model in the AN scheme one has to add the follow-
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Fig. 5. The ratio of the Debye and the fundamental Higgs
masses for λ

g2 = 1/8 calculated from gap (21) a and the leading
order result b

ing terms to the original Lagrangian:

δL =
1
2
m2Wi(δij +

∂i∂j

∂2 )Wj + fabcVijkW a
i W b

j W c
k

− 1
2ξ

∂iWi(1 − m2 1
∂2 )∂jWj . (20)

The first term in this expression is the mass term, the sec-
ond corresponds to a specific vertex resummation, where
the explicit expression for Vijk could be find in [22]. Fi-
nally, the last term is the gauge fixing term. For the cou-
pled gap equations one has to re-evaluate those self-energy
diagrams of the gauge, Higgs and A0 fields which involve
the modified gauge propagators from (20). Straightfor-
ward calculations lead to the following equations:

m2 = Cg2m +
g2m

4π

(
2f(mD/m) + f(M/m)

)
, (21)

M2 = µ2 +
1
4π

(
3
4
g2MF (M/m) − 6λM − 6cmD

)
,

m2
D = µ2

D +
1
4π

(
2g2mDF (mD/m) − 5λAmD − 8cM

)
,

where C = (1/(4π))(21/4 ln 3 − 1) [22] and the following
function was introduced:

f(z) = −1
2
z +

(
z2 − 1

4

)
arctanh

1
2z

, (22)

F (z) = −1 − 1
z

+
(

4z − 1
z

)
ln(1 + 2z). (23)

Let us first discuss the ratio of the A0 and the funda-
mental Higgs masses. In Fig. 5 this ratio is shown as cal-
culated from (21) and is compared with the corresponding
perturbative value. The µ interval in this plot corresponds
to the temperature range relavant for the electroweak the-
ory T < 1 TeV. We have also analyzed the µ dependence of
the fundamental Higgs mass alone in the full static and in
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Fig. 6. The non-perturbative correction to the Higgs mass as
a function of µ calculated from the full static a and from the
A0 reduced theory b

the A0 reduced model. For µ2/g4 in the interval (0.2−0.3)
the result of the gauge invariant approach agrees fairly
well with the masses obtained in the BP scheme. In Fig. 6
the difference between the Higgs masses calculated from
the coupled set of gap equations (21) and the leading or-
der perturbative result (M0) is shown. As one can see,
the non-perturbative correction to the Higgs mass is the
largest for small µ and is decreasing as µ increases reach-
ing the percent level for large enough µ.

The relative difference between the full static and the
A0 reduced theory, however, is slowly increasing as µ in-
creases and the hierarchy between the A0 and the Higgs
masses becomes less pronounced as µ gets larger (see Fig.
6). The relative difference between the Higgs masses calcu-
lated in the full static and in the A0 reduced theory varies
between 20% for µ2/g4 = 0.2 and 35% for µ2/g4 = 0.6.

It is also important to notice that the A0 field is not
sensitive to the dynamics of the Higgs field. In particular
it turns out that mD depends weakly on µ and λ in the
symmetric phase and its value is close to the corresponding
value calculated in the 3D adjoint Higgs model. Let us
notice that the magnetic mass in this resummation scheme
also seems to be insensitive to the dynamics of the scalars;
therefore, the magnetic and electric screening masses are
close to their values determined in the pure SU(2) gauge
model [19].

5 Conclusions

The Appelquist–Carazzone (AC) theorem provides an im-
portant asymptotic basis for the derivation of reduced ef-
fective models, when fields with largely different masses
appear in a field theoretical model. It states that in the
infinite mass limit the n point functions of the light de-
grees of freedom can be calculated from an effective theory,
in which the effect of the heavy fields is present only in the
couplings. In the electroweak theory these effective models

were determined perturbatively. In resummed perturba-
tion theory for finite orders the fulfillment of the theorem
cannot be checked on a diagram-by-diagram basis.

The comparative investigation of the screening masses
of the full static and the A0 reduced theories of the finite
temperature SU(2) Higgs model gives us a very valuable
opportunity to study how well the AC theorem works un-
der realistic mass ratios. In particular, in the symmetric
phase of the theory we have seen that a non-perturbative
coupling relation (18) is necessary to map almost perfectly
the masses determined in the A0 reduced model onto those
found from the gap equations of the complete static effec-
tive model. The λ/g2 range (1/64–1/8) has covered the
regime of strong first order transitions to values where only
a smooth crossover takes place. The correspondence be-
tween specific solution schemes, which is compatible with
the AC theorem represents constructive evidence for the
validity of the theorem.

The quality of the mapping did not depend on the
gauge choice, which, however, strongly influences the ac-
tual values of the screening masses. Therefore, we have
also applied a gauge invariant resummation scheme in the
symmetric phase. The results show a larger mD/M ratio
than perturbatively predicted, which makes the basis for
the A0 reduction more solid.

In the broken symmetry phase the non-perturbative
mapping as given by (18) does not work. The attempt to
separate the non-perturbative change of the Debye mass
from the result of the symmetry breaking led us to pro-
pose the mapping (19). It gave very satisfactory results
for both the Higgs mass and the upper metastability edge
µ+/g2 in the Higgs mass range λ/g2 ∈ (1/32, 1/8), when
resummed one-loop solutions of different relevant models
in specific schemes are calculated. We believe that our
phenomenological observation opens the door towards a
more refined physical understanding of the relationship of
the couplings in the two models. This is necessary for the
consolidation of the status of a non-perturbative A0 de-
coupling from the static sector of the finite temperature
Higgs theory.
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Appendix A

In Fig. 7 we list graphycally the additional diagrams con-
tributing to the A0 (a–i), the Higgs boson (j–l) and the
vector boson m self-energies and the vacuum expectation
value n.

Appendix B

The gap equations for the masses in the gauge invariant
resummation scheme read

m2 = m2
0 + mg2fB(m/M)
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+
g2

2π

(
−mD

2
+

4m2
D − m2

4m
arcth

m

2mD

)
, (24)

M2 = M2
0 + g2MFB(m/M)

− 3
2π

(
4mc

g

)2 1
M

arcth
M

2mD
− 3

2π
cmD, (25)

m2
D = m2

D0 +
g2

π

[
−mD

2
− m

2

+
(

mD − m2

4mD

)
ln

2mD + m

m

]

−8v(µ2 + λv2)
mc

gM2 +
1
π

cM

(
1 + 6

m3

M3

)

+
1
π

(
4mc

g

)2 [
3
2

mD

M2 − 1
2mD

ln
2mD + M

M

]
,(26)

v(µ2 + λv2) = −M2δfB(m/M) +
3
π

c

g
mmD, (27)

where the δfB(z) = fB(z)−f̄B(z) and f̄B(z), fB(z), FB(z)
are defined by the (24), (30) and (31). of [12]:

f̄B(z) =
1
π

[
63
64

ln 3 − 1
8

+
1

32z3 − 1
32z2 +

1
8z

+
3
4
z2 −

(
1

64z4 − 1
16z2 +

1
8

)
ln(1 + 2z)

]
, (28)

fB(z) =
1
π

[
63
64

ln 3 − 1
8

+
1

32z3 − 1
32z2 − 1

16z
− 3

√
ξ

16

−
(

1
64z4 − 1

16z2 +
1
8

)
ln(1 + 2z)

]
, (29)

FB(z) =
1
π

[
−

(
3
32

+
9
64

ln 3
)

1
z2 +

3
16

(
1 − 3

2

√
ξ

)
1
z

−3
8
z −

(
3
8
z2 − 3

16
+

3
64z2

)
ln

2z + 1
2z − 1

]
. (30)
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